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Shear flow has been shown experimentally to lead to large concentration fluctuations in entangled
polymer solutions near to their coexistence curves. I develop a dynamical theory of concentration fluc-
tuations coupled to polymer elastic stress, in terms of a “two-fluid” model of polymer plus solvent. At
first order in shear rate ¥, only one component of the stress is coupled to the concentration. The struc-
ture factor S(g;y) is given as a “history integral” over thermal-noise amplitudes at wave numbers con-
vected onto ¢g. The characteristic wave number ¢ *, at which concentration fluctuations relax in a stress-
relaxation time, determines (1) the length scale for the mixing of modes as observed in the dynamic light
scattering of quiescent solutions, and (2) the length scale of peaks observed in static light scattering un-
der shear. Both features depend on treating stress dynamics beyond an adiabatic approximation. At
0(}'/2), the spinodal is shifted to higher (lower) temperatures for fluctuations in the gradient (vorticity)

direction.

PACS number(s): 61.25.Hq

Moderately concentrated polymer solutions under
shear flow show a host of remarkable properties; their
striking rheological behavior in a multitude of situations
has been widely studied. In the great majority of these
studies, the concentration of the polymer in the solution
is or is assumed to be spatially uniform. In some regimes,
however, particularly for entangled solutions not too far
from their coexistence curves, shear flow couples strongly
to concentration fluctuations.

This behavior has been explored experimentally by
several groups, beginning with observations of increased
turbidity of entangled polymer solutions in near-6 sol-
vents when the solutions were forced through capillaries
[1]. This effect was attributed by those who first observed
it to a shift in the spinodal temperature induced by the
Poiseuille flow.

More recently, several groups [2—7] have studied stat-
ic and dynamic light scattering from similar solutions un-
der well-characterized rheometric shear flows. Among
the striking experimental results recently obtained [2],
the solutions were seen to scatter light most strongly at a
finite wave vector, corresponding to a characteristic size
for concentration fluctuations of several thousand
angstroms, at shear rates comparable to the stress-
relaxation rate 7~ ! of the solutions. Enhanced forward
scattering—characteristic of an incipient phase
separation—was observed only at higher shear rates, and
even then the light scattering was strongest at a finite
wave vector.

The relaxation of the light scattering to the quiescent
behavior was also recently studied [3]. The time depen-
dence of the relaxation of the structure factor from its
steady-state value under shear to its quiescent equilibri-
um value was shown to be closely related to the striking
behavior first observed in dynamic light scattering from
quiescent solutions by Adam and Delsanti [8]. They saw
two characteristic relaxation rates for concentration fluc-
tuations of a given wave number, with a dispersion rela-
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tion suggestive of two coupled modes. Their results were
in accord with a simple theory of Brochard and de
Gennes of an entangled polymer solution as a “transient
gel,” which behaves as a simple two-fluid mixture on time
scales long compared to 7, and as a solvated gel on short-
er time scales [9]. Associated with this crossover in
behavior with time scale is a “magic length”
l, ~(D7)'”2, above which concentration fluctuations de-
cay by diffusion with diffusion coefficient D as in a simple
two-fluid mixture. Concentration fluctuations of size less
than [,, cause stresses in the entangled polymer network
before they dissipate.

In this paper, I will describe a dynamical theory of
coupled concentration and stress fluctuations in a poly-
mer solution under shear flow, as a pair of coupled
Langevin equations. In such a theory, thermal-noise
sources constantly produce fluctuations, which are con-
vected by the shear flow and decay in response to thermo-
dynamic forces. The dynamical steady state of birth,
convection, and death of fluctuations gives rise to the
structure factor.

The model described in this paper has several impor-
tant antecedents. In the absence of shear flow, the model
is consistent with the Brochard—-de Gennes description
[9]; the coupling of stress and concentration of a transient
gel is the means by which shear flow, which generates
stress, can cause the growth of concentration fluctua-
tions, as observed in the experiments.

For sufficiently slow processes, at wave numbers
sufficiently small that the stress in the entangled network
relaxes quickly to a value consistent with local equilibri-
um, the present model reduces essentially to that given by
Helfand and Fredrickson (HF) [10]; similar approaches
have also been taken by Doi [11], Onuki [12], and the
present author [13]. In the HF model, the stress is cou-
pled to the concentration, but the evolution of the stress
is taken to be adiabatically determined, i.e., the stress is
given by a constitutive relation.
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This approximation fails at sufficiently large wave
numbers and short time scales that the stress cannot fol-
low the birth and death of concentration fluctuations; the
crossover wave number is none other than g*~1/, 1 the
inverse of the ‘“magic length.” The inhomogeneous
stresses cannot faithfully follow the concentration fluc-
tuations at shorter length scales, which lessens the
efficiency of the HF mechanism for shear-enhanced con-
centration fluctuations. Thus the magic length also turns
out to be the length scale of the peak observed in static
light scattering by Wu, Pine, and Dixon [2].

This paper is organized in five sections, as follows. In
Sec. I, I present general considerations leading to a pair
of coupled Langevin equations describing concentration
and strain fluctuations. The ingredients for this formula-
tion are a two-fluid model of polymer plus solvent in-
spired by theories of flow in porous media [14] and the
Brochard-de Gennes theory; Galilean invariance, which
determines the form of the convective terms for the
strain; the result from Doi-Edwards theory that stress re-
laxation in entangled systems is approximately single ex-
ponential even in the nonlinear regime [15]; and Onsager
reciprocity [16].

In Sec. II, the results of the adiabatic approximation
are reviewed; simple estimates are obtained of the sign
and size of the effect of shear on concentration fluctua-
tions. The structure factor, including effects of affine
convection, is computed as a ‘“‘history integral” over the
lifetime of fluctuations. The HF mechanism for growth
of fluctuations is described in real and reciprocal space,
using the two-fluid model.

In Sec. III, the stress dynamics are retained, and argu-
ments for the characteristic length scale of the observed
peak in the structure factor are given. A simplified model
at low shear rate involving a single component of the
strain tensor is obtained. This model maps onto the
Brochard-de Gennes theory; the resulting mixed hydro-
dynamic modes are displayed.

In Sec. IV, numerical results for the structure factor
are obtained by computing a discretized history-integral
expression for the matrix of correlation functions; the
magnitude, width, and location of the scattering peak are
displayed. The arguments of the previous section as to
the effects of affine convection and stress dynamics are
checked by artificially turning off the convection term
and forcing the adiabatic approximation at all wave num-
bers. The transient response of the structure factor after
cessation of shear is explored.

In Sec. V, limitations and possible extensions of the
present theory are explored, including saturation effects
(breakdown of small-fluctuation approximation), effect of
higher shear rates (shear thinning), and effects of normal
stresses on the location of the spinodal [11].

I. MODEL FORMULATION
A. Dynamical theory

To describe the effect of imposed shear flow on concen-
tration and other fluctuations in a polymer solution, a
dynamical theory is required. Shear flow is not analogous
to a thermodynamic potential, such as an orienting po-
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tential acting on the bonds of the polymer. The static
structure factor results from a dynamical steady state, in
which random thermal forces create fluctuations, which
are convected by the shear flow and decay by diffusion.

A description of a fluctuating system with imposed
shear flow can be given in terms of coupled Langevin
equations for the long-lived variables of interest. Gen-
erally, the long-lived variables included in such a theory
are hydrodynamic or broken-symmetry degrees of free-
dom [16]. At long wavelengths, these variables relax at
rates that vanish as some power of the wave number.
The relaxation rates are slow either because some quanti-
ty must be transported a large distance (conservation
law), or because a long-wavelength distortion of the vari-
able costs very little free energy (broken symmetry).

This approach has been carried out for demixing sim-
ple fluids under shear [17]. In that problem, the impor-
tant long-lived fluctuating quantities are the concentra-
tion difference from its average value and the variations
in the velocity field itself about the imposed mean flow.
The problem is appropriately simplified by assuming the
fluids are incompressible, which eliminates the density
and the longitudinal part of the velocity from the set of
long-lived variables.

B. Strain as a variable

Because only the relaxation rates of the few conserved
or broken-symmetry variables vanish in the limit of long
wavelengths, at low frequencies a separation of time
scales exists between the relaxation rates of the few long-
lived variables and all other variables [16]. Such theories
of hydrodynamic fluctuations are valid for wave numbers
and frequencies sufficiently small that all but the long-
lived degrees of freedom have reached local equilibrium.
For a solution with sufficiently long and entangled poly-
mer chains, the time for elastic stress to relax may be ex-
tremely long. This means the hydrodynamic theory is
only valid for frequencies less than the stress relaxation
rate, i.e., for frequencies so low that the polymer solution
is Newtonian.

To increase the range of frequencies in which the mod-
el is valid, some new dynamical variable corresponding to
fluid stress or fluid strain must be added to the set of
long-lived variables. This must be done even though the
stress-relaxation time does not vanish in the limit of long
wavelengths. In solids, the strain field is a broken-
symmetry variable, since uniform translation leaves the
free energy unchanged. In a liquid, translational symme-
try is not broken, so that with sufficient time, stresses re-
lax and strains are not defined. However, on time scales
short compared to the stress-relaxation time, the strain in
a fluid may be a more or less well-defined quantity. Phys-
ically, the strain in a fluid corresponds to the deforma-
tion, which, if it were made instantaneously, would relax
the stress.

Because the stress in a polymer solution is not hydro-
dynamic, separation of time scales cannot be invoked to
limit the number of variables in the theory, once stress is
included. That is, there are other degrees of freedom, for
instance, higher moments of the distribution of bond
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orientations, which relax on time scales comparable to
the stress-relaxation time. These degrees of freedom are
neglected in what follows for two reasons. First, as
shown below, the equation of motion for polymer concen-
tration fluctuations couples quite generally to the poly-
mer elastic stress tensor. Second, reasonable equations of
motion for the elastic stress tensor itself can be written
without coupling to the neglected variables.

C. Two-fluid model

Several approaches are available to derive the form of
the coupled Langevin equations for polymer concentra-
tion, polymer strain, and velocity perturbations about the
mean shear flow. One systematic approach, partially car-
ried out [13] for the case of polymer chains described by
the Rouse model [18] of microscopic dynamics, is based
on projection operator techniques [19]. This method,
though cumbersome, does formally produce Langevin
equations of canonical form for a set of long-lived vari-
ables, from the microscopic Langevin equation describing
a Rouse chain in a shear flow acted upon by thermal
forces. I shall not pursue this approach here.

There are in addition two phenomenological ap-
proaches to writing the desired Langevin equations. The
first is simply to write the most general allowed form
based on symmetry arguments, Galilean invariance, On-
sager reciprocity, and positivity of dissipation. For
sufficiently simple systems this leaves only a few un-
known coefficients in the Onsager matrix, which are tak-
en as phenomenological parameters. The diagonal terms
in the Onsager matrix are generalized diffusivities or re-
laxation rates, and have a familiar interpretation. In the
present case, it turns out that the off-diagonal coupling
between the concentration and strain variables is crucial
to the physics. The size of this coupling could not be
known from arguments as to the general form of the
Langevin equations; more physical input is required.
This leads to the second phenomenological approach, a
two-fluid model of polymer and solvent [20,9,21,11,13].

In a two-fluid model of a polymer solution, the momen-
tum densities of polymer and solvent are considered sepa-
rately. That is, two separate equations are written to de-
scribe the evolution of the momentum densities of the
polymer and solvent as a result of various stresses in the
problem. Of course, only the total momentum density is
a conserved quantity and thus a long-lived variable; if the
polymer and solvent are moving relative to each other,
large drag forces quickly make the two velocities equal.
Nonetheless, it is useful to write separate momentum evo-
lution equations, because certain stresses act directly on
the polymer, while others act directly on the solvent and
only influence the polymer through the large drag forces.
This information turns out to determine the form of the
coupling between polymer concentration and polymer
elastic stress in the Langevin equation for concentration,
as I shall show below.

Stresses acting on the polymer directly include the fol-
lowing.

(1) The polymer elastic stress Hﬁf’, which is communi-
cated down the backbone of polymer chains. Under con-
stant shear-flow conditions, this stress is continually built
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up by convection and slowly relaxed by repetition of en-
tangled chains. This gives rise in steady state to large
shear-rate-dependent stresses, i.e., large solution viscosi-
ties and/or normal stress coefficients.

(2) The osmotic stress Hﬁj‘-’)z —ud,;, which is communi-
cated by direct interactions between monomers. Gra-
dients in the osmotic stress give rise to conventional poly-
mer diffusion. The chemical potential is given generally
by u=¢8F /8¢ —F /V, where F is the free energy and V is
the volume of the system. The free energy F is the sum of
a concentration-dependent modulus E(¢) times a func-
tion of the strain,

FO=E($)f,(W), (1)

and an osmotic term

FO)= [ dx [£O¢)+ (V47
~1 [ dax ' @le(g)? . 2)

Here x (q)=(1+£&%¢2)x ! is the inverse susceptibility,
with y " 1=02f() /542,

(3) The drag force I'(¢)(v,—v,) between solvent and
monomer density, when the solvent and polymer veloci-
ties are not equal. This drag coefficient, by analogy to
fluid flow through a porous medium [14], should be of or-
der T(¢)~mno/Ep(d)?, where 7, is the solvent viscosity
and £ is the hydrodynamic screening length [22].

Stresses acting on the solvent directly include the fol-
lowing.

(1) Solvent viscous stresses Hﬁ-j)=170[V,-(vs )+ V(v ],
which are negligibly small if the polymer solution is well
entangled so that the solution viscosity is large compared
to 7.

(2) Hydrostatic pressure —pV,;, which enforces the
constraint of the constant total density in an incompressi-
ble solution.

(3) The reaction couple of the drag force between sol-
vent and monomer density.

The polymer concentration satisfies a conservation law
with the polymer velocity v,

$+V-¢v,=0 . 3)

Equations of motion for the solvent and polymer
momentum densities g, =(1—¢)p,v; and g, =¢p,v, then
take the form

0=g,—V-(II'”+11'") —T'($)(v,—v,) ,

0=g,—V-II"'+Vp +T($)(v,—v,) .

4)

Equation (4) omits momentum convection, i.e., terms of
the form V,(pv,v;), because the Reynolds numbers of in-
terest are very small.

The drag forces cancel in sum of the two momentum
equations, which expresses conservation of the total
momentum g =g, +g;:

0=¢+Vu—V-II'9—V-I+Vp . (5)
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The solution is assumed to be incompressible, which im-
plies

O:V'gzv'[pp¢vp+(1_¢)psvs]zpsv'vs (6)

in the approximation that ¢<<1

+(1—¢)p, ~p,.

Having written equations for two velocities, it is now
fruitful to eliminate the polymer velocity in favor of the
mass-averaged velocity. The two velocities are kept near-
ly equal by the action of the large drag forces; they differ
slightly when the other stresses in Eq. (4) are nonzero.
For the slow flows of interest, inertial terms may be
neglected, which leads immediately to an expression for
v, in terms of v:

p
v, =v, +T7Y(V-II'+V-II')) . v

and p=p,é

The polymer moves relative to the solvent as a result of
gradients either in the osmotic or polymer elastic stress,
with a small mobility determined by the ease of solvent
flow through the polymer solution.

For dilute solutions, nearly all of the mass is solvent;

that is, the solvent velocity and the mass-averaged veloci- '

ty are equal to within terms of order ¢, which shall be
neglected here.

Using Eq. (7) for v, in Eq. (3) for the polymer concen-
tration gives the suggestive form

0=¢+V-0¢+V-{~H(V-IV+V-II')) , (8)

where ¢S=T. The term arising from the osmotic stress
gradients is simply V-(£'Vu), which describes ordinary
diffusion in response to chemical potential gradients. The
physics of the two-fluid model is that the osmotic and
elastic stress gradients appear in the same way in the
diffusion equation for polymer concentration.

With the neglect of inertial terms and solvent viscous
stresses, Egs. (5) and (6) become

VX(V-II©)=0,
V-v=0.

9)

Equation (9) requires that the divergence of the polymer
elastic stress tensor be the gradient of a scalar field. This
constraint ultimately determines the perturbation of the
velocity from the mean shear flow, as shown in Sec.
IIIB. The physics here is the same as in conventional
creeping-flow approximation of Newtonian liquids: if
inertial terms are neglected, the velocity field is deter-
mined by the requirement that the viscous stresses be bal-
anced by the pressure.

D. Strain equation of motion

Since the polymer concentration is coupled to the poly-
mer elastic stress, which relaxes slowly, an equation of
motion must be supplied for the elastic stress itself.
Again, I proceed phenomenologically. The ingredients
for the equation of motion of some variable describing
the polymer stress are as follows.

(1) Galilean invariance. The polymer stress is convect-
ed by the polymer velocity, because that velocity gen-
erates translations of the polymer. The convective terms
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are simplest written in terms of the polymer strain, how-
ever; this is because successive deformation tensors com-
pose. The most convenient strain tensor for this purpose
is [23]

W=E-ET,

&r'=E-br .

(10)

Here E is the deformation tensor, which relates a dis-
placement vector 8r’ in a deformed state to 87 in the un-
deformed state. Successive deformations E,E,, ..., E,
give a total deformation tensor E=E, - - - - - E,-E,.

The deformation tensor acting during a time df in an
inhomogeneous velocity field is E;;=§,;+(dv; /9x;)dt,
which leads to the convective part of the equation of
motion for W,

Wz—(vp-V)W+Lp-W—+— W'LpT+ cee
(Lp)ijzvj(vp)i .

(11)

Here I have made the reasonable assumption that the
polymer velocity convects the polymer strain tensor.

(2) Strain-free energy. The nonlinear relation between
polymer elastic stress and strain is expressed in terms of
the free energy functional of the strain F'®. Given such a

functional F'®, the stress I1'®) is given generally by [23]

SF(e)
W

Because the stress-strain relation is nonlinear, the convec-
tive terms of Eq. (11) are cumbersome written in terms of
the stress, which is why strain is chosen here as a dynam-
ical variable. The stress attained by successive small
shear deformations is not given by any simple composi-
tion law; straining an already strained polymer solution
gives less additional stress—this is shear thinning.

(3) Exponential stress relaxation. It is a remarkable
feature of the reptation theory of stress relaxation that
stress in an entangled polymer solution relaxes with the
same stress relaxation function ¥(t), regardless of the am-
plitude or tensor character of the stress [15]. This occurs
because the stress relaxes by the reptative diffusion of a
polymer chain out of its distorted tube; the distorted tube
bears the stress, but the rate at which the tube is forgot-
ten is independent of the stress. The function ¥(?) is ap-
proximately a single exponential [15]; for present pur-
poses, the stress relaxes according to

ne=2w (12)

me=... _T—1(¢)H(e) . (13)

Here and throughout this paper, the deviatoric stress,
i.e., the stress minus its equilibrium isotropic value at the
local concentration, has been used.

The relaxation term in the strain equation of motion is
then determined by the chain rule,

(14)

Vo= e 1
W= 27 Wi W

Combining these ingredients, the equation of motion for
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the polymer strain is
i — T
W=—(v, VIW+L, - W+W-L,

_, W

SF
an(e) : sw

S (15)

—27

with the stress I1'® given by Eq. (12), the polymer veloci-
ty v, given by Eq. (7), and the free-energy functional
F(W,¢) yet to be specified.

E. Canonical Langevin equations

The phenomenological equations of motion [Egs. (8),
(9), and (15)] for the polymer concentration, velocity, and
polymer strain can be put in a more canonical form, as
was first shown by Onuki. The canonical form for cou-
pled Langevin equations, for which many important
properties have been proven, is for a set of variables {¥;}

W, =(P; +F”)ST n; (16)
with P; and T';; the Poisson-bracket and Onsager cou-
plings, respectively. The Poisson-bracket couplings con-
serve free energy, while the Onsager couplings are dissi-
pative. The Onsager matrix must satisfy the well-known
reciprocity relation I';; =T ;. Equations of the form Eq.
(16) have been shown to have positive energy dissipation,
and to satisfy the fluctuation-dissipation theorem, when
the Gaussian thermal-noise sources 7); are chosen with
the proper mean-square amplitudes:

<7'],'(t)77j(tl))=2rij8(t_t') . (17)

Consider first the polymer concentration equation (8).
The stress terms driving the diffusion may be written in
terms of thermodynamic derivatives; using the general re-
lation u=¢8F /8¢ — F /V leads to an expression for v,

_ -1 OF SOF oF
= ——VW :—=+2 W-——
VD TV TV w2V s
(18)
and an equation of motion for ¢,
: - SF
+Vovp+V-g! v—~— Wi
¢+V-wéd+V-{ —¢ 56 v I3 %
OF
+2V- —— | |=0.
v-{w- SW} 0 (19)

The conventional diffusion term V-(£7!'¢VOF /3¢) is
evidently a diagonal entry in the Onsager matrix; the
couplings to the strain are off-diagonal Onsager entries.
There must be corresponding terms in Eq. (15) for the
strain. The corresponding terms are part of the convec-
tive terms in Eq. (15) in which a portion of v,, namely,
—T " '¢VSF /8¢, appears:

Wa= Py, 2L VW=V, r—gv, oL

J 8¢ j 8¢ ]W
=+ (transpose)+ - -+ . (20)
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The remaining pieces of v, contributing to convective
terms in Eq. (15) involve only the strain itself, and can
separately be put in an explicitly Onsager-symmetric
form. Thus, if only Onsager symmetry is required, there
is some ambiguity as to the choice of the convecting ve-
locity for W and hence the form of the equations of
motion [Egs. (8), (9), and (15)]. However, the physically
reasonable assumption that the convective velocity for
polymer strain is v, is consistent with Onsager symmetry.

The relaxational terms in Eq. (15), namely, Eq. (14),
must likewise be shown to obey Onsager reciprocity.
This is not manifest in the form of Eq. (14), and is most
easily checked once a manageable form of F (W) has been
specified.

The velocity in the present theory is treated not as a
fluctuating dynamical quantity, but only as a field satisfy-
ing the constraints of incompressibility and creeping flow,
Eq. (9). Thus the appearances of velocity v in the model
equations are not quite of canonical Langevin form—
there is no equation of motion for v. Nonetheless, the
necessary properties can easily be demonstrated. First,
note that the couplings of ¢ and W to v are evidently
those mandated by Galilean invariance. Second, the con-
vective terms involving the solution velocity v can be
shown to lead to positive dissipation, by considering the
total derivative of the free energy:

F={ dx ¢+ [ dx2= W @1)
Using the equations of motion (8) and (15) for ¢ and W
then gives

F=— [ dxv-VF— [ dxv,v,II}¢ . (22)

Now V-v =0, so the first term vanishes; use of the Stokes
equation (9) for v converts the second term to
Mo f dx(V,v; )2. Thus the dissipation from the terms in-
volving v is indeed positive, and negligible if the solvent
viscosity is to be neglected.

Finally, as the solvent viscosity is neglected, there is no
need for random thermal forces acting on the total
momentum density; the fluctuation-dissipation theorem
relates the strength of thermal noise to the size of dissipa-
tive coefficients. Noise sources of canonical form may be
added to Eqgs. (8) and (15) to complete the Langevin equa-
tions.

F. Role of F(W)

The final ingredient in the model formulation is an ex-
pression for the elastic free energy F (W), from which the
stress-strain relation is derived. The simplest such free
energy is that which describes noninteracting Gaussian
chains, which is appropriate for chains described by the
Rouse model. As the Rouse model neglects both entan-
glement and hydrodynamic screening effects, this model
is sensible only for polymer chains near the overlap con-
centration.

The Rouse form for F (W) may be obtained by consid-
ering the partition function of a set of Gaussian chains
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with configurations R (s) affinely distorted by a deforma-
tion tensor E:

Z= [ DR exp (23)

OR“
E as

3
"2

The Gaussian integrals over the set of bond displacement
variables may be evaluated to give a free energy

FOW)=2 [ dV ¢ t(W—1nW) . (24)

The corresponding stress-strain relation is linear:
N9=E(¢)W—38),

(25)
E($)=3¢/a> .

If the stress-strain relation is linear, then the strain as
well as the stress relaxes with a time constant indepen-
dent of strain. Indeed, using Egs. (24) and (15) gives a
strain equation of motion for a spatially uniform system
under flow,

W=L-W+W-LT—7"{W-§). (26)

As discussed in the following section, the steady-state
solution of this equation gives rise to a constitutive rela-
tion between the stress and the rate of strain tensor with
viscosity and normal stress coefficients independent of
shear rate. The model with the Rouse expression for
F (W) does not exhibit shear thinning. To obtain shear
thinning, the stress-strain relation must be nonlinear, so
that the relaxation time for the strain variable is not in-
dependent of strain.

Within the Doi-Edwards model of entangled polymer
chains, nonlinearity in the stress-strain relation arises
from the constraint of constant tube length. To see this,
note that the general microscopic expression for the elas-
tic stress tensor [15],

H(e) =(3 2 ds 8(x —R % ))ww
P(x)=(3/a )gf s 8(x SN,
27)

may be interpreted as a sum of the contributions either
from the literal microscopic bonds of the polymer chain,
or from the segments of tube to which each polymer is
confined. Doi and Edwards argue that the tube after an
initial affine strain quickly recovers its equilibrium
length, in a time short compared to the stress-relaxation
time. If the tube length is constant, then from Eq. (27)
the trace of the stress tensor should be constant.

Many models exist for F(W) with the property that
trI1'® is constant, including for instance the independent
alignment (IA) model. In the present approach, the IA
model is not particularly convenient, because the stress-
strain relation is not readily inverted. Thus the calcula-
tion of the relaxation term in the strain equation is prob-
lematic. Other more tractable phenomenological expres-
sions for F(W) exhibiting shear thinning exist; their
consequences for polymer solutions in shear flow will be
pursued in future work.

For present purposes of understanding the fluctuations
of polymer solutions at low to moderate shear rates, it
turns out that even the Rouse elastic energy is adequate
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for a qualitative description. Because of the other ap-
proximations made (retaining only strain as an additional
variable, single stress-relaxation time), it is inappropriate
to seek too accurate a form for F(W).

II. ADIABATIC APPROXIMATION

A. Constitutive equation

Having derived an equation of motion for the polymer
strain, I shall now review the adiabatic approximation, in
which the time derivative of the strain is set to zero. This
limit is valid for sufficiently long wavelengths and time
scales such that the stress relaxes to a local equilibrium
value. In other words, the adiabatic approximation holds
when the solution is Newtonian. This section reviews the
approach and results of Helfand and Fredrickson in Ref.
[10].

As described after Eq. (26), the solution of the steady-
state strain equation in a spatially uniform system gives a
constitutive relation. For the simplest case of a Rouse
solution under simple shear v=yyX, the steady-state
solution of Eq. (26) gives

N=np Ry +9%)+ ¢, 7%,

(28)
1=G1, %, =2G7*.

The Rouse constitutive relation is substituted into the
equations for the polymer concentration [Eq. (8)] and ve-
locity [Eq. (9)], and the result is expanded to linear order
in deviations from the uniform concentration and shear
flow. Here, I retain only terms to O(y) for simplicity.
The result, first derived and explored by HF, is after
Fourier transform

. 3¢ o
¢+74q, %0 +(Dg*—2y7'¢ 9, q,)6=mn, ,
y

1, 0F i _
D= 1, 048 ~ 1 1 .
E Mg =6 o
The perturbation of the velocity field from uniform
shear flow is determined by the conditions (9). Substitut-
ing the constitutive relation and linearizing gives

(@2—gdn .
8v=——qu3q T yesd,
K (30)
=q4XzZ.

ap

At this level of approximation, the perturbation of the ve-
locity field does not enter the concentration equation.
The perturbation 8v would enter the concentration equa-
tion through a term V,[V ;7(V,8v;)]; since &v is orthogo-
nal to q§, the contribution vanishes to linear order in 8¢.

B. Effective diffusion constant

The terms driving polymer diffusion now have a form
they may be summarized in terms of an anisotropic
diffusion coefficient D(q), which at first order in shear
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rate is

A~y .. 0lnm G . .
D(q)=D |1 ZyTalnqS X_1¢%qqu (31)

In directions for which D(q) is smaller because of the
shear-dependent terms, fluctuations decay more slowly.
The amplitude of thermal noise generating the fluctua-
tions is unaffected by shear, so an increased S(q) should
result in those directions. (This argument neglects the
effects of the convective term yq,d¢/dq,; the effects of
this term are a recurring subject throughout this paper.)
For the viscosity nonlinearity, the diffusion is most
slowed along the line g, =g,; for the normal-stress non-
linearity, which contributes at higher shear rates, the
diffusion is slowest for g, =0.

From Eq. (31) a crude estimate of the size of the effect
on S(g) may be made. When D(q) is markedly aniso-
tropic, or certainly when D(q) becomes negative in some
directions, S(g) will be strongly distorted. This occurs
when

. dlnp G
T =~1. (32)
" 3ng x4

The effect of a given shear rate on S (g) is evidently larger
for long stress-relaxation times and large osmotic
compressibilities. Hence well-entangled solutions rela-
tively near a demixing transition should show strong
effects of shear on S (q).

C. Fourier-space description

The linearized equation of motion (29) for the polymer
concentration ¢ under the adiabatic approximation (28)
may be solved for a given realization of the noise, and
then averaged over the fluctuating noise with amplitudes
given by the fluctuation-dissipation theorem. To
motivate the solution, it is useful to describe the action of
each of the terms in the Fourier-space equation of motion
on a wave with wave vector gq. Because the equation has
been linearized, the fluctuating field may be built by su-
perposition of such waves.

As discussed in the preceding section, the conventional
diffusion term Dg? and the effects of the coupling to poly-
mer elastic stress can be lumped into an effective D(q).
The amplitude of a fluctuation at wave vector g decays at
a rate D(q)q>. The convective term ygq, d¢/dg, has no
effect on the amplitude of a fluctuation, but it changes the
wave number of a fluctuation according to

a=—74¢.9 . (33)

That is, ¢(q(z)) would be a solution of the equation of
motion if the convective term were the only term acting
on ¢. This flow in Fourier space is the Fourier transform
of simple shear. With the diffusion active, the amplitude
a(g(t)) of a wave initially at q (0) evolves in time as

a(qg(t))=exp

—fo‘p(au'))qz(t')dt' a(g(0)). (34

The thermal noise acts as a source of concentration
fluctuations, which are then convected down the
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Fourier-space streamlines and decay by diffusion at the
rate D(4)g%. An observer watching the concentration
field at time # =0 at an observation wave vector g, would
see contributions from fluctuations born “upstream” at
times ¢ <0 at wave vectors ¢ (¢). Combining the results
of Egs. (33) and (34), the concentration at ¢ (0)=g, and
¢t =0 for a given realization of the noise is

¢(q0)=fi) dt'exp

X7}¢(q(tl)) 5

— ft?D(a(tn))qZ(tn)dtn

(35)

which can be verified by substitution into Eq. (29).

The static structure factor S (gq) is given by the average
over instances of the Gaussian random noise. The mean-
square amplitude of the noise is given by Eq. (17); in the
present case the Onsager coefficient is £~ !¢,. Performing
this average leads to an expression for S(q) as presented
by HF,

Stgo)=x [ _dt'exp {~—2f;)D(’<i(t"))q2(t”)dt”
X[2Dg*(t")] .
(36)

D. No-convection limit

If the convective term 7,34 dqg, in Eq. (29) were not
active, the solution for a given realization of the noise
would not require a history integral. Then the structure
factor would simply be

S(q)=xD/D(q)

_ . dlnm G . .
~Y 1+2y¢aln¢ X_ltl%qqu . (37

[In the absence of shear, the structure factor in the
present model would be constant; a finite correlation
length can be introduced simply by including gradient
terms in the polymer free-energy density f(¢).]

In fact, Eq. (37) holds for sufficiently large wave num-
bers. For large ¢, the decay due to diffusion [assuming
D(4q) is everywhere positive] is so fast that the wave vec-
tor is convected a negligible amount by shear [Eq. (33)]
during the lifetime of a fluctuation. The condition for
Eq. (37) to hold is evidently

y <<Dg” . (38)

The first correction to the complete neglect of the con-
vection at large ¢ may be found by treating the convec-
tive term in Eq. (29) as a perturbation. This leads to an
additional contribution to the structure factor

'}" A A a lnS(q)
Dq? Ay d1ng?
This first effect of affine convection reflects the affine dis-

tortion of a nonconstant S(g). Notice that this term
enhances scattering along the line ¢,=—g,, and

85(g)~ S(q) . (39)
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suppresses fluctuations along g, =gq,, i.e., the first and
third quadrants of the shear plane in Fourier space. This
is exactly the opposite of the effect of the term resulting
from the concentration-dependent viscosity in Eq. (39).
The convective term, present even in models of concen-
tration fluctuations in mixtures of simple fluids, has a
qualitatively different effect from the stress-induced dis-
cussion mechanism.

Another important feature of Eq. (39) is that the struc-
ture factor depends only on the direction § in momentum
space, and not on the magnitude of g; the enhanced
scattering along g, =g, persists at large ¢g. This is not
consistent with experimental observations, which find
enhanced scattering only at sufficiently small wave num-
bers. The enhanced scattering at large g is cut off by the
breakdown of the adiabatic approximation, which I dis-
cuss in Sec. III.

E. Enhanced fluctuations in real space

It is helpful to describe the origin of enhanced concen-
tration fluctuations in real space, to gain some physical
insight into the mechanism. I shall consider the simplest
case within the adiabatic approximation of this section,
namely, the growth arising from a concentration-
dependent viscosity.

Consider a polymer solution in simple shear, with a cir-
cularly symmetric region temporarily containing more
polymer than average because of a long-wavelength con-
centration fluctuation. The viscosity in this region is
higher than in surrounding parts of the solution, because
the concentration is higher, and d Inn/d In¢ > 0. The ve-
locity field is in general perturbed by the nonuniform
viscosity; however, this is ignored in the discussion
below, with the justification that the results of the discus-
sion agree with the detailed calculations. The viscous
stresses are then simply given by a constitutive relation
for uniform shear, I1'¥=17(¢)y (X§+3%).

The viscous stresses are larger near the center of the

FIG. 1. Schematic illustration in real space of the polymer
elastic stresses acting on a more-concentrated region (shaded).
The simple shear flow is indicated by the dashed lines. The four
regions of polymer bounded by squares have unbalanced elastic
stresses acting on their boundaries. The stresses on each surface
are shown as light solid arrows; the sum of elastic forces acting
on each region are shown as heavy solid arrows.

3681

concentrated region than in the surrounding solution.
These stresses represent the pull of oriented polymer
chains crossing a given surface dividing the polymer solu-
tion. One may envision the steps in the polymer chains
as springs slightly oriented along the g, =g, direction
and giving rise to the stresses. Where there are more
springs, or they are more oriented, the stresses are
greater. The stresses acting on the boundaries of four
subregions of the concentrated region, one in each quad-
rant, are represented by the arrows in Fig. 1. In a simple
shear flow with uniform viscosity, the viscous stresses
acting on the boundaries of a given region sum to zero.
Because of the concentration-dependent viscosity, howev-
er, the viscous stresses acting a subregion in Fig. 1 do not
sum to zero.

There is a net elastic force acting on the polymer in the
first ‘and third quadrant pulling inwards towards the
center of the dense region. Likewise there is an elastic
force outwards, away from the center of the dense region,
acting on the polymer in the second and fourth qua-
drants. These elastic forces are balanced by an equal and
opposite drag force, arising from the flow of solvent rela-
tive to the polymer. In the first and third quadrants, the
solvent must flow outwards as the polymer moves in-
wards, resulting in a drag force on the polymer directed
outwards. In the second and fourth quadrants, the sol-
vent flow and drag force on the polymer point inwards.

As a result, there is a tendency for a concentrated re-
gion to become narrower along the g, =g, direction and
broader in the orthogonal direction, exactly opposite to
the effect of affine convection. The narrowing along the
4. =g, direction evidently opposes the broadening due to
diffusion, leading to slower decay of concentration fluc-
tuations modulated along that direction.

At the same time, of course, there are osmotic forces
that tend to drive the polymer outward from the dense
region, and cause inward solvent flow with a resulting
equal and opposite drag force on the polymer, regardless
of the direction in real space. In addition, the shape of
the concentrated region would convect affinely in the ab-
sence of either this conventional diffusion or the stress-
driven diffusion described above. The combination of
these three processes determines the detailed evolution of
the concentrated region.

III. FLUCTUATIONS AND STRESS DYNAMICS

A. Breakdown of adiabatic approximation

The adiabatic approximation assumes that the polymer
elastic stress relaxes quickly to a value consistent with a
steady state at a given local concentration and shear rate.
That is, the adiabatic approximation assumes that the
polymer elastic stress is given adequately by a constitu-
tive relation between stress and shear rate. As shown in
Sec. II D, this leads to a structure factor S(q,7) in shear
that is larger in the first and third quadrants, in agree-
ment with experiment. However, the resulting S(gq,7) is
only a function of q for large g until wave numbers so
large that g&~1, which does not agree with experiment.

The assumption that the stress relaxes quickly to a
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value given by the local steady state must break down
when the time scale for the birth and death of concentra-
tion fluctuations becomes shorter than the stress-
relaxation time. For wave numbers larger than a charac-
teristic wave number ¢ * such that

[D(g*))P=r"1, (40)

the dynamics of the strain variable must become impor-
tant. If the stress, responding with a finite response time
7, is unable to follow the fast fluctuations of concentra-
tion at high wave numbers, then the mechanism for
enhanced concentration fluctuations should become less
effective than the adiabatic estimate. As a result, a
theory that takes account of stress dynamics should pre-
dict a structure factor S(q,y ) that decreases for increas-
ing g >q* down to S(gq,0).

For sufficiently small wave numbers, namely, the re-
verse of the condition (38), convection is important. For
such wave numbers, the diffusive decay rate is so slow
that the wave vector changes substantially by affine con-
vection during the time it takes the fluctuation to decay.
As a result, a fluctuation born in the regions of enhanced
growth of fluctuations (i.e., g, =g, for the viscosity non-
linearity) does not stay in that region long enough to be
appreciably affected. The result of convection at small
wave numbers is to make .S (¢) smooth at the origin, elim-
inating the discontinuity implied by extrapolating Eq.

(37) to g =0.
With stress-driven diffusion corresponding to a
concentration-dependent viscosity only, there is no

change in the decay rate of fluctuations along g, =0.
Thus if S(g,y) is continuous at ¢ =0, it must be that
§(0,7)=S8(0,0) when only the concentration dependence
of the viscosity is important. This, together with the
enhanced growth of fluctuations for wave numbers
g <g*, should give rise to a peak in the structure factor
with ¢ =q* somewhere in the first and third quadrants,
with a peak width of order ¢*. This argument is
confirmed by detailed calculations described below.

The presence of such a peak in S(g,y) is in striking
agreement with a series of light-scattering experiments of
Pine and co-workers [2,24]. In their experiments, dis-
cussed further in Sec. IV, polymer solutions under
moderate shear were observed to have enhanced light
scattering with a broad peak in S(q,7). The observed
peak position corresponded to a length scale of fractions
of a micrometer; the value of ¢* was in agreement with
Eq. (40) and independently measured values of D and 7
from dynamic light-scattering and rheological measure-
ments. All purely static lengths in the problem—the
correlation length, the hydrodynamic screening length,
the radius of gyration of the polymers—were at least an
order of magnitude smaller than (g*)~!. The strikingly
large length scale of the concentration fluctuations in
these experiments arises from a comparison of time
scales, namely, the stress-relaxation time and the
diffusion rate.

B. Minimal model

In Sec. I, coupled Langevin equation for concentration
and polymer elastic strain were derived phenomenologi-

SCOTT T. MILNER 48

cally in some generality. In particular, the form of the
elastic free energy was left unspecified, to allow for mod-
els with nonlinear stress-strain relations and shear thin-
ning. Now, to illustrate in the simplest possible way the
effects of stress dynamics on concentration fluctuations in
polymer solutions under shear, I abandon that generality.

In principle, the equations [(8), (9), and (15)] with a
shear-thinning F (W) could be linearized about a state of
uniform concentration and uniform shear flow at nonzero
shear rate, and the linearized equations solved by a histo-
ry integral similar to those of Sec. II C. Instead, I shall
analyze in detail the model with F (W) of Eq. (24) corre-
sponding to Gaussian chains, for which there is no shear
thinning, and only in the case of small shear rates. Two
important simplifications entail: (1) the determination of
the flow perturbation 8v is particularly simple, and (2)
only a single component of the string tensor couples to
the concentration. Thus a 5X5 set of equations coupling
the xx, yy, and zz components of the strain to the concen-
tration, is reduced to a 2 X2 set of equations. The results
that follow are consistent with results obtained by Doi
and Onuki [25] for the case of polymer-solvent mixtures.

In the particular case of the elastic free energy given by
Eq. (24), the stress-strain relation II'“=G(W —§) is
linear, and the relaxation term in Eq. (15) reduces to
77 Y(W—38). The concentration is to be expanded about
¢=dy the strain about W, =8+r(L,+L]) with
Ly=(Vvy)7, and the velocity field about uniform shear
vo=7yX. The perturbations of concentration, strain, and
velocity are denoted ¢;, W,, and v,. The resulting ex-
pansion of Egs. (8) and (15) gives

0=W,+vy- VW, —L W, —W, LY —L Wy—W,LT

-1
+7-71W1+ag—¢¢1(W0—8) ,
0=¢,+vy-Vé,+dotrL, ,
(41)
(Ll)ij:Vj(Ul)i+F71 —¢OX71ViVj¢1
aG
+£( W0_5)k[Vij¢1

+GV,V, (W, m] .

The dynamical analog of the HF mechanism—that the
viscosity depends on concentration—appears in Eq. (41)
in the form of concentration derivatives of 7(¢) and
G(¢). For instance, W, relaxes to a value
#1W,0(InT) /3¢ in response to a uniform concentration
change ¢,.

It turns out to be convenient to adopt a set of basis vec-

aaAa

tors {q,q,%} instead of {X,9,Z} for decomposing tensors
such as the strain tensor and vectors such as the velocity
perturbation Sv. Here §=2%Xgq is a vector in the shear
plane orthogonal to g; & is the corresponding unit vector.
The affine convection of uniform shear flow means that g
is a function of time, which will be accounted for.

The incompressibility condition V-v =0 means that the
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velocity perturbation v; must be perpendicular to g, i.e.,

v,=iqv,. The Stokes equation (9), when stresses due to
solvent viscosity are neglected, implies that the diver-
gence of the polymer elastic stress tensor must be the gra-
dient of a scalar, so that it may be balanced by a pressure
field. This implies

0—a,q,( H(e))
=7>7-G,(qxay+qyax )¢1+Gqu ’ (42)

where W =4-W,-q. The vanishing of the qq com-
ponent of the stress tensor is enforced in the equation of
motion for the strain by choosing v, such that Eq. (42) is
satisfied dynamically by the equation of motion for qu‘l'

The time derivatives of the components of W have con-
tributions from the components of dW /dt and from the

time dependence of ﬁ=q and q. For instance,
3, W,,=q-3,W-G+3,q-W-4+q-W-3,9 . (43)

The equations of motion for the unit vectors 4 and q are,
J

Y+Q-p=n,
Dg*(1—2ray 74,4, )
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from Eq. (33),
9,4=79,(—¥+¢,9), (44)

and 3,3§=2X9,4.

Using Eq. (43) with Egs. (41) and (44) leads to equa-
tions of motion for W,, and ¢ that are decoupled from
W, and W . to O(y). Note that v, itself must be O(y)
to satlsfy the constraint equation (42) and the contrlbu-
tion of v, to W, through §-(L;- Wot WL g
~q(L,+LT)§ vanishes to o(y) because §-v,=0.

Thus the time dependence of W, is unaffected by v, to
O(y), and v, may be chosen to satisfy Eq. (41) with no
effects on W,,. Since only W, appears in the concentra-
tion equation of motion, Eq. (41) has been reduced to a
2X2 system of equations. This simplification does not
occur when terms of order O(y?) are retained.

The resulting pair of equations may be written in ma-
trix form in terms of the two-component vector

b=(8/¢o, W,

—Drgq?

~ | —2DgX(1+2774,4 4,)+2(—B+2arDg*)y74,4, 7 '—274,4,+2Drg*(1+2774,q,) (43)
Here a, 3, and r are dimensionless constants, and D is the mutual diffusion constant, given by
3(InG) d(In7) i1 1 20
= =——, r=Gy, D=T ) =005 - (46)
a(ing) * P aimg) © "X X X TG,

The corresponding Onsager and susceptibility matrices I' and X ~! may be obtained by dropping all terms resulting
from fluctuations of the Onsager coefficients themselves, multiplying the steady-state value of 8F /8 W. That is, the per-
turbation of the rate-of-strain tensor in Eq. (41) becomes [compare Eq. (18)]

SF

(L), I8¢

=V T =V, V= +2(W(), V, V;

The Onsager matrix is comprised of the resulting coefficients of 6F /6¢ and 8F /8W,
The susceptibility matrix results from expanding the free energy F(¢$, W) about the uniform steady
To O(y) the results are

ables {¢, (W,)g,}.
state { ¢y, W} to second order in {¢, W,]}.

Dxgq?

x~! 0

X_1: - A A
0 $G(1—-2y7q,q,)

The Onsager and susceptibility matrices here depend
on the shear rate, because I have chosen to expand about
a uniform steady state at nonzero shear. Note that On-
sager symmetry has been preserved during the
simplifications of this section. Noise sources have been
restored to Eq. (45); their amplitudes are given by the re-
lation Eq. (17).

C. Without shear, a transient gel

Even in the absence of shear flow, the concentration
and stress are dynamically coupled. Some of the conse-

T oW,

—2Dxq*(1+2y74,4,)
—2Dxq*(1+2774,d,) 2/(G)(1+2rD7g*)(14+2774,§,)

(47)

4, in Eq. (41), written in the vari-

[

quences of this coupling were explored by Brochard and
de Gennes, who introduced a simple model equivalent to
Eq. (45) without shear (7 =0) on the basis of a two-fluid
argument similar to that of Sec. I [9].

The basic physics of Eq. (45) without shear is that on
time scales short compared to the stress relaxation time,
the strain responds as if the solution were a gel, with a
modulus equal to the plateau modulus. For instance, if a
small droplet of concentrated polymer solution is im-
mersed in pure solvent, the droplet may swell initially as
solvent molecules invade the droplet before the chains in
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the droplet can disentangle.

The length scale below which this is an important
effect is given by comparing the rate of solvent diffusion
in the concentrated solution, Dg 2. with the stress relaxa-
tion time 7.. For droplets large compared to (D7)'/?, a
small skin on the surface swells as the chains on the sur-
face of the droplet disentangle and diffuse into the solu-
tion. For a small droplet, the entire droplet swells as if it
were a gel particle, until the stress relaxes. The crossover
length scale, called the “magic length” by Brochard and
de Gennes, is precisely the inverse of the characteristic
wave number g* of Sec. II, which was determined by the
same comparison of time scales.

Another important consequence of the dynamic cou-
pling of concentration and strain is evident in the spec-
trum of fluctuations observed by dynamic light scattering
(DLS). The relaxations of ¢ and W, are coupled, so that
the hydrodynamic modes do not have a simple dispersion
relation. In the absence of the coupling, the eigenvalues
of the matrix Q(y=0) would be Dg? and 77 !; the
diffusive mode would only involve the concentration, and
the strain would relax independently. Because of the off-
diagonal terms in the Onsager matrix, Eq. (48), the eigen-
modes are “mixed” [26]. The matrix of response func-
tions in a system of linear coupled Langevin equations is
R=(—iwl '+ X ~1)71; the correlation function matrix
is given by the fluctuation-dissipation theorem as
S=2(R +R")/w. The concentration correlation func-
tion SM(q,a)) is measured in DLS. For the Onsager and
susceptibility matrices of Eq. (48) at y =0, using the
above expression for the matrix S, the correlation func-
tion S,,(g,®) is given by a weighted sum of two normal-
ized Lorentzians:

_2Dg* |, rn/m
e AP}
1 ry /T
+(1 =7 ) (49)
w°+r;

Here 7 and r, (r; >r,) are the two roots of the charac-
teristic equation for Q(y =0):

0=r2—r(r '+ Dg*1+2r))+Dg?r ! . (50)

For small wave numbers, the roots approach Dg? and
77 '4+2rDg* For larger wave numbers ¢* <gq <& !, the
roots become 7~ ! /(142r) and Dg?(1+2r); the crossover
wave number then satisfies DgZ(1+2r)~7"!. Note that
this is again the criterion for the characteristic wave
number g*, within the factor of order unity 1+2r. A
typical dispersion relation is shown in Fig. 2.

The relative weight of the two Lorentzians vanishes in
the limit of small wave number—all of the weight is in
the slowly relaxing diffusive mode. Thus in the true hy—I
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FIG. 2. The decay rates of the two coupled hydrodynamic
modes in the two-fluid theory, plotted vs g2, for r=Ey=0.25.
The dashed line shows the relative contribution of the slow
mode to the concentration autocorrelation function.

drodynamic limit, the stress is completely relaxed and the
dynamic coupling is unimportant for concentration fluc-
tuations. At large wave number, the ratio of the slowly
relaxing to quickly relaxing Lorentzians becomes 2r, and
the slow and fast eigenvectors of the hydrodynamic ma-
trix () are proportional to (1,1/r) and (1, —2), respec-
tively. When r is small, i.e., when the plateau modulus G
is much smaller than the osmotic modulus X“, the slow
eigenvector is purely a strain relaxation, and the concen-
tration fluctuations in DLS have mainly a fast com-
ponent.

D. Large-q, no-convection limit

As discussed in Sec. II D, the effects of the affine-
convection terms in the equations of motion may be
neglected at large enough wave numbers such that Eq.
(38) holds. Without these terms, the coupled equations
(45) are easily solved for a given realization of the
thermal noise without resort to a history integral. In the
matrix notation, we have ()= [" dt'exp[—(z
—t)Q]y(t"); the correlation function is S
=(¢,(0)4;(0)). The average may be performed using
Eq. (17) for the noise correlations to obtain the relation

Q-S+S5-07=21 . (51)

To first order in shear rate, with S=X-+8S and
Q=Q,+ 81, one obtains

Q-85 +8S-Q7=—(80-X,+X,-8Q) . (52)

This relation [or indeed Eq. (51)] may be solved for
8S by regarding 8S as a three-component vector
(88 44,8S4w,0Syw). The left-hand side may be
represented as a linear operator and the corresponding
matrix inverted. The result for the component 8S,, to
O(7)is

88 4o =(yTIX(@) X ra+(1+2rg*)rB/{1+q*[x(q) "' +2r]})

(ymr(a+p),
— {(pPIr(a+2rB/(14+2r)) , g* <<q<<& !
(yrrax(@?, ¢>§".

q—0

(53)



48 DYNAMICAL THEORY OF CONCENTRATION FLUCTUATIONS ...

Observe that for ¢ >¢* and r small, the effects of the
concentration dependence of the stress-relaxation time,
given by f3, disappear; the stress-relaxation time is ir-
relevant on time scales such that the solution looks like a.
gel, and r is small enough that the slow mode is purely
strain relaxation. In this range of wave numbers, only
the concentration dependence of the plateau modulus,
given by a, contributes to the growth of anisotropic fluc-
tuations. This mechanism for producing “butterflies” in
scattering from concentration fluctuations in strained
gels has been discussed by several authors [27,28]. As g
becomes large enough that x(g)~ !'#1, even the contribu-
tion of a to concentration fluctuations is suppressed.

To summarize this behavior: neglecting effects of affine
convection, (1) the structure factor should have a peak at
q* because for wave vectors larger than this the growth
of fluctuations due to dependence of 7 on ¢ disappears;
and (2) the high-q shoulder of this peak should be rather
broad, since not until g ~&~ ! does the quiescent structure
factor shut down the effects of the concentration-
dependent modulus.

Evidently, Eq. (53) breaks down for sufficiently large 7,
since the change in S(gq) is no longer small. Note also
that the argument that affine convection could be neglect-
ed was based on the assumption that the decay rate for

M(t,t’)=gimoexp[ﬂ(q(t))A]-exp[ﬂ(q(t—A))A] -----

Indeed, this is precisely how the expression may be evalu-
ated numerically, as described below.

The matrix of correlation functions is evaluated by
averaging the square of the vector ¥(¢) over the noise
correlations using Eq. (17), with the result

Sgen=2[" darMs,t')T(q(t"))-MT(1,1') . (56)
Here S(g) is computed at a wave vector g (), in which
the time dependence represents the affine convection
parallel to the g, axis.

I evaluate this expression by discretizing Fourier space
along the g, axis, and so discretizing the history integral
into a discrete number of events. If the variation of the
convected wave number on the scale of the Fourier-space
mesh is neglected, the following discrete evolution equa-
tion connecting S(g(¢)) with S(q(f —A)) can be derived:

swo=2[" dr+ [' M) Ta) M)
~{ A(t)—exp[ —AQ(1)]- A(2)-exp[ —AQT(2)]}
+exp[ —AQ(2)]-S(t —A)-exp[ —AQT(1)],  (57)
with
20()=Q(1)- A(t)+ A(2)-QT(¢2) .

The first term (¢ <t' <t—A) represents the contribution
of fluctuations born within the last time step; the second
term (¢’ <t—A) represents the continuing decay of fluc-
tuations born at some previous time step, at a wave vec-
tor ‘“upstream” in the affine convection. When convec-

exp[Q(q(t'))A] .
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fluctuations was essentially Dg?; this certainly fails when
the contributions of the stress-driven diffusion are of
comparable order to Dg?, which is the criterion for
8S(q,y) of Eq. (51) to be of order x(q) itself.

IV. HISTORY-INTEGRAL SOLUTIONS

A. Introduction

To obtain more complete information about the
steady-state structure factor resulting from Eq. (45), a
history-integral solution analogous to that of Sec. IIC is
necessary. Again, matrix notation is helpful. The set of
equations (45) may be solved for a given realization of the
thermal-noise vector by a time-ordered matrix-
exponential history integral,

wn=[" dr'M,r')nq)),
_ft’tdtuﬂ(q(tu))]] .

The time-ordered exponential factor may be under-
stood as an ordered product of exponentials of the hydro-
dynamic matrix at successive wave vectors on the affinely
convected path leading from ¢q(¢’) for ¢’ <t to the obser-
vation wave vector g (¢):

(54)
M(t,t')ZTlexp

(55)

tion is unimportant, the exponential factors are large, the
second term vanishes, -and the equation reduces to S = 4,
or Eq. (51).

In practice, the computation of S(g) begins with some
large g,, for which convective effects are unimportant
and the mesh size is chosen small enough to give a
reasonable representation of the g dependence of ) and
I'. Using Eq. (57), a single pass down a given axis in
Fourier space parallel to the g, axis is sufficient to com-
pute S'(g) all along that axis.

For the case of coupled equations, Eq. (45), the evolu-
tion equation (57) implies frequent evaluation of matrix
exponentials. These may be efficiently calculated [29] by
using the relation expM =lim, _, (8+M /n)", where § is
the unit tensor. A value of n =2™ is chosen sufficiently
small based on some convenient norm of M so that
expM =(6+M /n)", and then (8+M /n) is squared m
times. Typically m is only logarithmic in the dimension
dys of M, so this algorithm requires roughly O(dj,Ind,,)
scalar multiplications.

B. Units and parameters

Before presenting the results of numerical calculations
of S(g,7) based on Eq. (57), a system of appropriate units
should be chosen, and the resulting dimensionless param-
eters identified. A natural choice of wave number and
time scales in this problem are the characteristic wave
number ¢ * and the stress-relaxation time 7.

The concentration variation may be measured in units
of the mean concentration; the strain variable W is, of
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course, dimensionless. Finally, since the system of equa-
tions are linear, each variable may be divided by y!’?, to
give Sy, =1 in absence of shear. The resulting forms of
the hydrodynamic matrices are

—2arsq,q, 0
= 89 = A b
2=0,+50, 50 2(—B+2arqg*)sq,q, O
2 2
q —2q
= -1 =
Qo=Ix"", I —2q° 2/r(14+2rg?) |’ (58)
L _xto
X =1l r/2 1"

Here s =y 7 is the dimensionless shear rate, and all ap-
pearances of s other than those involving a and 8 have
been neglected for simplicity.

The dimensionless parameters in Eq. (58), defined in
Eq. (46), are as follows.

(1) The logarithmic derivatives of the plateau modulus
E and stress-relaxation time 7 with respect to concentra-
tion, denoted a and 3. If these parameters are not of or-
der unity, then large shear rates are needed before the
stress-driven diffusion becomes important. Before such
shear rates are reached, the small-shear rate expansion of
Sec. III breaks down.

(2) The dimensionless ratio of plateau and osmotic
moduli » =G, which is a measure of the relative ease of
dilating the transient gel and diluting the solution. If the
solution is not easily compressed or is not well entangled,
this parameter is small. Note that this parameter multi-
plies the terms in 8Q; if » becomes very small, the effect
of shear on the concentration fluctuations becomes negli-
gible because the polymer elastic stresses are small com-
pared to the osmotic stresses.

(3) The dimensionless correlation length £g*. As dis-

(a)
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cussed in Sec. IIID, a finite value of the correlation
length is required to cut off the contributions of a
concentration-dependent plateau modulus to the anisot-
ropy in S(q) for g >g*.

The units and dimensionless parameters in the model
may all be measured straightforwardly by rheology or dy-
namic light scattering. A measurement of the dynamic
viscosity of the entangled solution determines the plateau
modulus G and the stress-relaxation time 7; measure-
ments as a function of concentration give d InG /d In¢
and d In7/d In¢. The mutual diffusion coefficient D can
be determined from DLS, and the osmotic compressibili-
ty x ! by some such probe as absolute-intensity static
light scattering, or measurements of the osmotic pressure.

In short, with sufficient auxiliary measurements, there
are no adjustable parameters in the present theory. In
the absence of such measured values, the numerical re-
sults of the next section are presented for ‘typical”
order-unity values of the two dimensionless parameters;
specifically, £g*=0.15, r=0.25, a=1, and =4, values
which are comparable to those of the system reported in
Refs. [2,3].

C. Evolution of S (g) with y

The main qualitative features of the static light-
scattering measurements of Pine and co-workers [2,24]
are reproduced by the numerical calculations, for reason-
able values of the dimensionless parameters. These quali-
tative features are as follows.

(1) The structure factor indeed has a peak at q of order
g*, with a peak width of the same order, as anticipated in
the qualitative arguments of Sec. III A. A series of con-
tour plots of the structure factor for increasing shear rate
are displayed in Fig. 3.

FIG. 3. Contour plots in the shear plane of
the steady-state structure factor S(q) for a se-
quence of increasing shear rates
y7=0.25,0.5,1,2. The wave numbers are
given in units of g*. Parameters for these
plots are =1, =4, r=0.25, and £¢* =0.15.
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(2) The size of the peak in the structure factor grows
with increasing shear rate. This may be measured in
several ways: either the maximum intensity, or the total
integrated intensity under the structure factor, may be
plotted. (See Fig. 4.)

(3) The position of the peak at low shear is near the line
qx=q,,i.e., 45° above the g, axis. As the shear rate is in-
creased, the peak moves in the direction of affine convec-
tion in Fourier space. That is, the angle made by the
peak wave vector with the g, axis decreases. (See Fig. 4.)
The peak wave number is a rather weakly decreasing
function of shear rate. (See Fig. 4.)

The explanations given in Sec. III A for the shape of
the structure factor may be tested within the numerical
calculation by artificially “turning off”’ various parts of
the model. For instance, the action of the affine convec-
tion can be turned off artificially by replacing Eq. (57)
with the limiting form Eq. (51) everywhere in Fourier
space. At sufficiently small shear rates, the resulting
structure factor is identical at sufficiently large wave
number to the full model, but suffers a discontinuity at
the origin, in which lim,_,,S(q) depends on the direction
of approach. (See Fig. 5.) This is precisely the sort of
dependence of S (g) on G of the no-convection limit dis-
cussed in Sec. III D. At larger shear rates, an eigenvalue
of Q becomes negative for a range of q around the line
4, =¢,; then convection cannot be ignored for any wave
number, since without convection the fluctuations would
be unbounded for such G.

Next, the importance of the stress dynamics can be
tested by evaluating the adiabatic approximation, Eq.
(36), by numerical methods analogous to those presented
in Sec. IV A. The resulting structure factor (see Fig. 6) is
identical to the full model at sufficiently small wave num-
ber. For large g the radial contour lines show the depen-
dence of S(gq) only on § described by HF. Here only
£ 1< o serves to cut off the increase in S (q).

Finally, the origin of the dependence of peak position
on shear rate may be explored, by computing a measure
of the decay rate of fluctuations as a function of wave
vector. The shifts of the peak location with increasing
shear rate may be explained in two ways. First, at higher
shear rate, the concentration dependence of the first

85, J6Sdq
(-6ap) o

FIG. 4. Shown are shear-rate dependence of maximum (+)
and integrated (X ) intensity, peak width (X), and peak angle
(% ). The intensity grows first linearly, then more strongly with
shear rate; the peak width is roughly constant; the angle de-
creases with shear rate.
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FIG. 5. Contour plots in the shear plane of S(q) when the
affine-convection term in the equation of motion is “turned off.”
Here y7=0.5, with parameters as in Fig. 3. Note the discon-
tinuity at the origin and the symmetry about the line g, =g, .

normal-stress coefficient becomes important. This source
of stress-driven diffusion has a different dependence on §.
For the adiabatic approximation and the Rouse constitu-
tive relation Eq. (28), diffusion driven by the first normal
stress gives growth for q§ along the velocity (X) direction,
as discussed by HF. The normal-stress contributions are
not accurately represented in the present calculations be-
cause of the expansion to first order in shear rate of Sec.
IIIB.

FIG. 6. Contour plots for the adiabatic approximation of
Ref. [10] for shear rate y7=0.75 and parameters as in Fig. 3.
The peak is much larger than those of the complete theory; the
peak is very broad in the direction of increasing wave number,
cut off only by the nonzero correlation length &.
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Second, the action of affine convection itself tends to
move strong fluctuations from the region where they
grow, along the “flow lines” in Fourier-transformed shear
flow. Figure 5 shows that the structure factor with affine
convection turned off is symmetric about the line g, =g,
while at the same shear rate the actual structure factor
[Fig. 3(b)] already shows considerable shift of the peak
away from this symmetry line. Hence the action of the
convective terms is sufficient to produce the shifted peak
position—though certainly at a higher shear rate, the
normal-stress terms would begin to dominate.

D. Transient effects

Experiments have also been carried out by Dixon,
Pine, and Wu to study the time-dependent relaxation of
the shear-induced scattering in entangled polymer solu-
tions [3]. In these experiments, the steady-state structure
factor is the initial condition, and the shear flow is
stopped abruptly. Then, the time-dependent decay of the
scattered intensity is observed at different wave vectors,
and the relaxation rate is extracted.

It is found experimentally that the relaxation is well
described by a single-exponential decay, in contrast to the
DLS data on quiescent solutions. Furthermore, the re-
laxation rate as a function of wave vector agrees well
with the lower of the two characteristic decay rates ob-
served in DLS. Recall from Sec. III C that in DLS the
relative amounts of slow- and fast-decaying signals are
given by Eq. (49); at small g, all of the weight is in the
slowly decaying signal, while at large g, the fast- and
slow-decaying signals have comparable weight when the
plateau and osmotic moduli are comparable.

This observation suggests that the shear flow is mainly
stimulating the growth of the slowly decaying eigenmode
of the hydrodynamic matrix, for large wave numbers. I
now argue that this behavior suggests that the concentra-
tion dependence of the modulus, i.e., the parameter a, is
small. The correlation function itself can easily be shown
to satisfy the following time-dependent equation when
the shear flow is stopped:

S+Q,S+S5-0l=2r,, (59)
which is solved by

S(1)=Sq+exp[ —1Q0]-[S(0)—Sq]-exp —1Qy] ,
Qo SeqtSeq Q=21 -

(60)

Here the initial condition S (0) is the steady-state value of
S under shear.

The initial condition §(0)=S(0)—S,, of S=S—S,,
may be expanded in the set of dyadics of eigenvectors of
Q. If the S(0) is composed of a dyadic of just the slowly
relaxing eigenvector S(0)=ee’, then Eq. (60) implies
that the relaxation of S is single exponential.

The initial condition S(0) solves the steady-state equa-
tion (51) for sufficiently large wave numbers and small
shear rates that convection may be neglected. The ex-
pansion in dyadics corresponding to the O(y) result Eq.
(53) is
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ras
(142r)?

2
2r“Bs e, »
1+2r

where e;=(1,—2) and e, =(1,1/r) are the fast and slow
eigenvectors.

If ra <<, or r is large compared to unity, then only
the dyadic e e, contributes appreciably to the sum, and
the decay of S will be approximately single exponential.

In the experiments of Refs. [2,3,24], comparison of the
results of Sec. IIIC with DLS measurements give
r=0.25. Comparison of solvent viscosities and stress-
relaxation times suggests that S~4 and that « is small.
The viscosity 1n(¢)=~E(¢$)r(¢) and the stress-relaxation
time 7(¢) are each increased by a factor of several hun-
dred when the concentration is changed from the overlap
concentration ¢* to about 5¢*, so that almost all of the
concentration dependence of 7 is explained by an in-
creased 7.

S= [efef+2r(efes+esef)+4r2eses]

(61)

V. DISCUSSION
A. Saturation effects

When the concentration fluctuations become large,
linearization about the mean concentration is no longer a
good approximation. Terms beyond the linearization of
Vu=yx~ '8¢ enter to prevent large concentration fluctua-
tions, as they must, since ¢ is a bounded variable.

The first nonlinear term in a simple theory to account
for the suppression of large fluctuations is a correction to
Vu of order ¢°, coming from a quartic term in the free-
energy density f'”(¢). This leads to a nonlinear
Langevin equation. A first approach to solving this equa-
tion would be to make a self-consistent mean-field ap-
proximation, replacing ¢° by 3{¢?)¢, and computing the
mean-square fluctuation {¢?) self-consistently. Qualita-
tively, this would lead to an effectively smaller osmotic
compressibility as the concentration fluctuations became
larger; thus the large growth of fluctuations reflected in
Figs. 3 and 4 for large shear rates would be limited.

A rough criterion for the breakdown of the linearized
theory compares the linear and nonlinear terms above;
that is, the linearization fails when 0f /3¢
~3°f/0¢°($*). In a semidilute concentration range
where f is a power law in ¢, this gives the obvious condi-
tion ($?) ~¢%. The mean-square fluctuation is given by
the integral under S(gq); in the absence of shear this is
roughly x /a3, where a is a microscopic cutoff. If the
width of the shear-induced peak is of order ¢* in all
directions, the integral under the peak is roughly
(@*)XSmax- Hence the theory applies until
Smax~1/(g*a)’. Since g* is typically a small wave num-
ber, this is not a very restrictive condition. The concen-
tration fluctuations induced by shear are large in spatial
extent but small in amplitude.

B. Shear thinning

The model formulation of Sec. I is sufficiently general
to accommodate an elastic free energy corresponding to
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shear thinning, which becomes important in entangled
solutions for shear rates greater than the stress-relaxation
rate. A practical requirement is that the stress-strain re-
lation must be invertible, since dW /3Il is required to
compute the Onsager coefficients in the strain equation of
motion. This poses a problem for many common shear-
thinning approximations, such as the independent-
alignment model [15].

One tractable phenomenological expression for F(W),
for which the stress-strain relation may be given explicit-
ly, is

F(W)=G In[trW'2/(detW)"/®] ,

(62)
N=G[wW2/(tw'?)—8/3] .

This stress-strain relation (1) satisfies trIl =const, and (2)
is in reasonable numerical agreement with the IA model
for uniaxial strains, for which the IA stress may be sim-
ply computed.

In principle, as discussed in Sec. III B, a coupled set of
linear Langevin equations could be obtained by expand-
ing the full equations of motion, Egs. (8), (9), and (15),
about a state of uniform shear flow at a finite shear rate.
The formally small quantity would be the concentration
variation, and the deviation of the stress and velocity
fields from their constant values would also be taken
small. The simplifications of Sec. III B that resulted in a
2 X2 system of equations would be lost, but the numerical
approach of Sec. IV would still be tractable, given the
more complicated hydrodynamic matrix.

However, this program is of somewhat limited utility
because of the dynamic instabilities that plague crude
models of shear thinning. Typically, a model designed to
preserve the “tube length” and thus the trace of the stress
tensor has the feature that at some shear rate of a few
times the stress-relaxation rate, the viscous stress falls
with increasing shear rate. This leads to dynamic insta-
bilities. Both the IA model and the elastic free energy of
Eq. (62) have this property. Designing a suitable form for
F (W) without this pathology, and investigating its conse-
quences in solutions under shear, is a subject for future
work.

C. Effect of normal stresses

At higher shear rates than those considered in Secs. III
and IV, the effects of normal stresses become important.
One effect of normal stresses, discussed in Sec. II B, was
first analyzed by HF within the adiabatic approximation.
That is, the directions in Fourier space in which decay of
concentrations is slowed by normal-stress coupling are in
the vicinity of g, =0 for the Rouse constitutive relation,
Eq. (28).

More generally, one may ask whether, at higher shear
rates, the spinodal for demixing of the polymer and sol-
vent is or is not shifted up or down in temperature. This
paper has shown that the characteristic scattering peaks
in polymer solutions under moderate shear are not
caused by a shift in the spinodal, but that does not pre-
clude shifts in the spinodal at higher shear.

Onuki has employed a natural criterion for the spino-
dal in a system under simple shear flow, namely, the in-
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stability of a concentration fluctuation with wave vector
orthogonal to the velocity direction [17,30]. This cri-
terion is natural, as well as convenient, because such a
fluctuation is not distorted by the affine convection. In
addition, one may consider a concentration fluctuation of
sufficiently long wavelength that the stress-relaxation
time is much shorter than the diffusion time. Then the
adiabatic approximation of Sec. II is justified.

The most general constitutive equation consistent with
the symmetry of simple shear is, to second order in shear
rate,

H(e):ny(ﬁ?+?ﬁ)+y2(¢x’x"x‘+¢yﬁ+1/}1/2\2) . (63)

with viscosity 7 and normal-stress coefficients {1,} func-
tions of concentration.

Consider a concentration fluctuation 8¢ with wave vec-
tor along §. Equation (9), which determines the velocity
perturbation for wave vector along g,, implies simply
that the shear stress is spatially constant; that is, the re-
quired velocity perturbation is a variation in the shear
rate along the y axis such that ynp=const.

Using the constitutive relation (63) and the constant
shear stress, Eq. (8) for the concentration with the adia-
batic approximation becomes, to first order in 8¢,

0=¢—Dd2¢p—¢ 'R ((a—1)F)

2
+& Wy )2————8(1’&3;77 )8§¢ . (64)

The third term in Eq. (64), discussed by Onuki [30], is
part of the chemical potential gradient V(¢0F /3¢ —F).
To second order in shear rate, this term may be
replaced using a linear stress-strain relation F(W)
~(G /(W —8)*=(ny)*/(2G).

The decay of fluctuations described by Eq. (64) may be
summarized in terms of an effective diffusion coefficient
D 4(q), as in Sec. II B:

a—1 3(1/G)
Y

3, /)
3¢

For wave vectors along the Z direction, there is no ve-
locity perturbation needed to satisfy Eq. (9); then the
shear rate is constant, but n varies. The corresponding
result for the effective diffusion coefficient is

D 4(G=%)=D+¢ ny)?

(65)

a—1 3(p*/G) 9¢:
2 ¢ 3¢

In each case, the terms proportional to a—1 arise from
the dependence of the chemical potential on the strain, as
discussed by Onuki [30]. For the Rouse model, G(¢) ¢
and so a=1, and these terms are absent, as found by HF.

The vanishing of D ; determines the spinodal. It is ap-
parent that the location of the spinodal depends on the
concentration dependences of G, 7, and the normal-stress
coefficients 1, and ¢,. It is not sufficient here to know
the concentration dependence of the normal-stress
differences. In the usual rheology of solutions of constant

(66)

D +(q=2)=D+¢ y?
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concentration or incompressible melts, the trace of the
stress tensor is canceled by the pressure as the constraint
of constant concentration or density is enforced.
Typically, the normal-stress coefficients scale as
~G7r* and the viscosity scales as n~Gr7, so that
¥/n*~1/G and 7°/G~1; hence the two different
derivative with respect to ¢ appearing in Eq. (65) [and
likewise in Eq. (66)] are of the same magnitude. For
rheological models in which the stress tensor has con-
stant trace (signifying constant tube length; see Sec. I F),
one obtains ¥, =2N,/3+N,/3, ¢,=—N,;/3+N,/3,
and Y,=—N,/3—2N, /3, where N, and N, are the usu-
al normal stress-difference coefficients. Hence ¢, and ¢,

are both typically negative, since typically N, >2|N,| and
N, <O0.

Assuming G and 7 are increasing functions of ¢, and
that ¢, and ¢, are negative and scale as described above,
then both O(y?) terms lower D for =9, and increase
D s for §=2Z. Hence the spinodal is shifted to higher
temperatures for wave vectors along the gradient direc-
tion, and to lower temperatures for wave vectors along
the vorticity direction, at second order in shear rate. The
strain dependence of the chemical potential and the stress
driven diffusion terms contribute with the same sign and
comparable magnitudes to the spinodal shifts.

D. Conclusions

This paper develops a dynamical description of cou-
pled concentration fluctuations and stresses in an entan-
gled polymer solution under shear. An essential in-
gredient of my approach is a two-fluid model of the poly-
mer and solvent dynamics, similar to the approach of
Brochard and de Gennes to fluctuations in quiescent sem-
idilute polymer solutions. This approach leads naturally
to stress-driven diffusion, i.e., a concentration current
driven by an inhomogeneous elastic stress tensor, with
the same mobility as the usual diffusion current driven by
an inhomogeneous osmotic stress.

The resulting basic mechanism for enhanced concen-
tration fluctuations in shear flow results from larger elas-
tic stresses in regions of higher concentration. In a sim-
ple shear flow, the stresses act along g, =gq,; consider a
concentration fluctuation with wave vector in this direc-
tion. When the regions of higher concentration under
higher stress try to collapse along g, =g, to reduce their
stress, the resulting force opposes conventional diffusion;
such a fluctuation persists longer than in the quiescent
state.

The previous work of Helfand and Fredrickson, in
which an evolution equation for concentration was de-
rived for chains obeying Rouse dynamics, analyzed the
evolution of concentration fluctuations within an adiabat-
ic approximation for the stress. That is, the stress was as-
sumed to be given by a local constitutive relation. For
sufficiently large wave numbers, the stress relaxation at a
rate 7~ ! cannot follow concentration fluctuations with
diffusive decay rate Dg2. Stress dynamics becomes im-
portant at ¢* such that D(g*)*~7"1, at which point the
enhancement of concentration fluctuations becomes less
effective than suggested by an adiabatic calculation. This
leads to g* as a characteristic length scale for peaks ob-
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served in static light scattering of polymer solutions un-
der shear.

The simplest theory of coupled concentration fluctua-
tions and elastic stress results from an expansion to
lowest order in shear rate, in which concentration fluc-
tuations are coupled to a single component of the strain
tensor. The resulting expression for S(g) is a history in-
tegral over the birth and decay of fluctuation convected
onto the observation wave vector. This expression may
be effectively evaluated numerically. The resulting struc-
ture factor is in good qualitative agreement with static
light scattering, with a broad peak at g ~gq*, located for
small shear along g,==g,, and displaced for higher
shear rates in the direction of affine convection in Fourier
space.

The parameters in the theory, all experimentally acces-
sible, are the ratio of elastic-to-osmotic moduli G /y !
and logarithmic derivatives with respect to concentration
of G and the stress-relaxation time 7, as well as the di-
mensionless shear rate 7 and the length scale ¢*. When
G /x~ ! and the log derivatives of G and 7 are of order
unity, strong effects of moderate shear y 7~ O(1) on con-
centration fluctuations are expected.

The dynamical theory also provides a description of
the relaxation of S(g) from its steady state under shear to
the quiescent equilibrium value. If the concentration-
dependent stress relaxation time—which becomes ir-
relevant for ¢ > g* —is the dominant effect, then the re-
laxation to equilibrium takes place with a single exponen-
tial relaxation. This single relaxation time follows the
lower branch of the two hydrodynamic modes of the
two-fluid model; this behavior has been observed by Pine
and co-workers [2,3,24].

At higher shear rates, it becomes essential to include
normal stresses and shear thinning, both of which should
arise from a more elaborate strain-free energy F(W) and
the same general coupled equations for the concentration
fluctuations and elastic stress. To analyze experimental
light-scattering results obtained in the flow-vorticity
plane, S(g) must be computed to at least O(y?) to see
effects of normal stresses in the vorticity direction; this is
a subject for future work.

Without computing the entire function S(g) at larger
shear rates, one can analyze the shift in the spinodal for
concentration perturbations unaffected by the shear, i.e.,
with wave vectors normal to the flow. Shifts of the spino-
dal at O(y?) of comparable size and the same sign arise
from the dependence of the chemical potential on strain,
introduced by Onuki, and concentration dependence of
normal-stress coefficients. In a solution with varying con-
centration, the actual normal stresses play a crucial role,
as no constant-density constraint acts to cancel the iso-
tropic elastic stress. In the gradient direction, the spino-
dal is found to be shifted to higher temperatures to
O(y?), whereas in the vorticity direction the spinodal is
suppressed.
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